
BondGraphTools Documentation
Release 0.4.5

Peter Cudmore

Aug 17, 2021

CONTENTS

1 Tutorial: Driven Filter Circuit 1

2 Additional Tutorials 5

3 Tutorial: Building Modular Enzymatic Reactions 7

4 Discussion 13

5 API Reference 15

6 BondGraphTools 27

Bibliography 29

Python Module Index 31

Index 33

i

ii

CHAPTER

ONE

TUTORIAL: DRIVEN FILTER CIRCUIT

Goal: Build and simulate a simple passive filter using basic bond graph modelling techniques.
Difficulty: Beginner.
Requirement: BondGraphTools, Jupyter.
How to follow: Enter each block of code in consecutive cells in a Jupyter notebook.

In part 1 of this tutorial we will demonstrate how to build and connect models using BondGraphTools by constructing
a simple passive filter. Part 2 introduces control sources, and provides examples of how one can perform parameter
sweeps or input comparisons.

1.1 Part 1: Basic Use

First, import BondGraphTools and create a new model with the name “RC”:

import BondGraphTools as bgt
model = bgt.new(name="RC")

Now create a new generalised linear resistor (‘R’ component), a generalised linear capacitor (“C” component) with
resistance and capacitance both set to 1, and an equal effort (“0” junction) conservation law through which these
components share energy.:

C = bgt.new("C", value=1)
R = bgt.new("R", value=1)
zero_law = bgt.new("0")

Add the newly created components to the model:

bgt.add(model, R, C, zero_law)

Once the components are added to the model, connect the components and the law together. (Note the first argument
is the tail of the energy bond, the second is the head):

bgt.connect(R, zero_law)
bgt.connect(zero_law, C)

Draw the model to make sure everything is wired up:

bgt.draw(model)

1

BondGraphTools Documentation, Release 0.4.5

which produces a sketch of the network topology.

To demonstrate that the isolated system is behaving correctly, we simulate from the initial where the C component has
𝑥0 = 1 and run the simulation over the time interval (0, 5). This results in a vector 𝑡 of time points and a corresponding
vector 𝑥 of data points which can then be plotted against each other with matplotlib:

timespan = [0, 5]
x0 = [1]
t, x = bgt.simulate(model, timespan=timespan, x0=x0)
from matplotlib.pyplot import plot
fig = plot(t,x)

1.2 Part 2: Control

We wish to see how this filter responds to input. Add flow source by creating a new Sf component, adding to the model,
and connecting it to the common voltage law:

Sf = bgt.new('Sf')
bgt.add(model, Sf)
bgt.connect(Sf, zero_law)

The model should now look something like this:

bgt.draw(model)

The model also now has associated with it a control variable u_0. Control variables can be listed via the attribute
model.control_vars and we can observe the constitutive relations, which give the implicit equations of motion for
the system in sympy form:

model.constitutive_relations
returns [dx_0 - u_0 + x_0]

where x_0 and dx_0 are the state variable and it’s derivative. One can identify where that state variable came from
via:

model.state_vars
returns {'x_0': (C: C1, 'q_0)}

Here C: C1 is a reference to the C object itself.

2 Chapter 1. Tutorial: Driven Filter Circuit

BondGraphTools Documentation, Release 0.4.5

1.3 Part 3: Simulations

We will now run various simulations.

Firstly, we simulate with constant effort by passing the control law 𝑢0 = 2 to the solver and plotting the results:

timespan = [0, 5]
x0 = [1]
t, x = bgt.simulate(model, timespan=timespan, x0=x0, control_vars={'u_0':2})
plot(t,x)

Time dependent control laws can be specified as string. In this case we consider the response to a 𝜋−1 Hz sine wave:

t, x = bgt.simulate(model, timespan=timespan, x0=x0, control_vars={'u_0':'sin(2*t)'})
plot(t,x)

One can also consider the impulse response of by applying a step function input ot the control law, here x and dx
refer to the state-space of the model:

def step_fn(t,x,dx):
return 1 if t < 1 else 0

t, x = bgt.simulate(model, timespan=timespan, x0=x0, control_vars={'u_0':step_fn})
plot(t,x)

Finally we run a sequence of simulations where a new control law is generated based on the loop iteration:

fig = plt.figure()
for i in range(4):

func_text = "cos({i}*t)".format(i=i)
t_i, x_i = bgt.simulate(model, timespan=timespan, x0=x0, control_vars={'u_0':func_

→˓text})
plot(t_i,x_i)

1.3. Part 3: Simulations 3

BondGraphTools Documentation, Release 0.4.5

4 Chapter 1. Tutorial: Driven Filter Circuit

CHAPTER

TWO

ADDITIONAL TUTORIALS

2.1 Biochemical Networks Tutorials

Dr. Michael Pan has prepared a number of tutorials here for applications involving biochemical systems.

5

https://github.com/mic-pan/BGT_BiochemicalNetworkTutorials

BondGraphTools Documentation, Release 0.4.5

6 Chapter 2. Additional Tutorials

CHAPTER

THREE

TUTORIAL: BUILDING MODULAR ENZYMATIC REACTIONS

Goal: To build and simulate a simple reaction A = B, and exploit modularity to substitute in different
reactions structures.

Difficulty: Intermediate.
Require-
ments:

BondGraphTools, jupyter.

How to fol-
low:

Enter each block of code in consecutive cells in a jupyter notebook.

3.1 Part 1: Building a basic chemical reaction

Begin by opening a new jupyter notebook, importing the toolkit and creating a new model:

import BondGraphTools as bgt
model = bgt.new(name="Reaction")

Next, add two chemical species, two common effort junctions and a reaction:

A_store = bgt.new("Ce", name="A", library="BioChem", value={'k':10})
B_store= bgt.new("Ce", name="B", library="BioChem", value={'k':1})
A_junction = bgt.new("0")
B_junction = bgt.new("0")
reaction = bgt.new("Re", library="BioChem")

bgt.add(model, A_store, B_store,A_junction, B_junction, reaction)

Then wire the network up:

bgt.connect(A_store, A_junction)
bgt.connect(A_junction, reaction)
bgt.connect(reaction, B_junction)
bgt.connect(B_junction, B_store)

Set the pressure and temperature to one (ie; parameters are normalised) and set the conductance of the reaction com-
ponent to None so as to treat it as control variable.:

for param_index, (component, parameter_name) in model.params.items():
if parameter_name in ("T", "R"):

bgt.set_param(model, param_index, 1)
(continues on next page)

7

BondGraphTools Documentation, Release 0.4.5

(continued from previous page)

elif component is reaction:
bgt.set_param(model, param_index, None)

Draw the model to inspect the network topology.:

bgt.draw(model)

One can go ahead and run simulations on this for example, by varying the reaction rate inside a loop and plotting the
results:

import matplotlib.pyplot as plt
x0 = {"x_0":1, "x_1":1}
t_span = [0,5]
fig = plt.figure()
ax = plt.gca()
ax.set_title("One Step Reaction")

for c, kappa in [('r', 0.1), ('b', 1), ('g', 10)]:
t, x = bgt.simulate(model, x0=x0, timespan=t_span, control_vars={"u_0":kappa})
plt.plot(t,x[:,0], c+':')
plt.plot(t,x[:,1], c)

3.2 Part 2: Modularity and enzyme catalysed reactions.

We wish the replace the one step reaction above with an enzyme catalysed reaction. Our first step will be to make a
factory function which takes an enzyme name as an argument and produces an enzyme catalysed reaction model. This
process is nearly identical to the steps followed in part 1, however we now wrap the procedure in a function so we can
reuse it later. Define a factory function to produce models of enzyme catalysed reactions::

def enzyme_catalysed_reaction(name):
"""
This function produces a bond graph model of an basic enzyme catalysed
reaction of the from `S + E = E + P` where the substrate and product
are exposed as external ports.

Args:
name (str): The name of the enzyme

Returns:
`BondGraph`: The resulting model

"""

cat_model = bgt.new(name=name)

Construct the external ports.
substrate = bgt.new("SS", name="S")
product = bgt.new("SS", name="P")

(continues on next page)

8 Chapter 3. Tutorial: Building Modular Enzymatic Reactions

BondGraphTools Documentation, Release 0.4.5

(continued from previous page)

Here we build the reaction, again with the rate as a control variable.
Again, we assume parameterised have be normalised with respect to
pressure and temperature.
cat_reaction = bgt.new("Re", name="Re", library="BioChem", value={'r':None, 'R':1, 'T

→˓':1})

We choose 'k' to be 1 for demonstration.
enzyme = bgt.new("Ce", name="E", library="BioChem", value={'k':1, 'R':1, 'T':1})

Substrate + Enzyme flux conservation law
SE = bgt.new('1')
Product + Enzyme flux conservation law
PE = bgt.new('1')

Conservation of enzyme law.
law_E = bgt.new("0")

bgt.add(cat_model, substrate, product, enzyme, SE, PE, law_E, cat_reaction)

connections = [
(substrate, SE),
(law_E, SE),
(law_E, enzyme),
(SE, cat_reaction),
(cat_reaction, PE),
(PE, law_E),
(PE, product)

]
for tail, head in connections:

bgt.connect(tail, head)

bgt.expose(substrate, 'S')
bgt.expose(product, 'P')

return cat_model

Use this function to build a new enzyme catalysed reactions, and draw it to make sure the topology is correct:

E1 = enzyme_catalysed_reaction("E1")
bgt.draw(E1)

In order to replace the reaction, with the newly built E1, first remove all the bonds connecting the original reaction.:

bgt.disconnect(A_junction, reaction)
bgt.disconnect(reaction, B_junction)

Then remove the old reaction and add E1:

bgt.remove(model, reaction)
bgt.add(model, E1)

Complete the substitution by connecting the substrate to ‘A’ and the product to ‘B’. Draw the model to vefify the

3.2. Part 2: Modularity and enzyme catalysed reactions. 9

BondGraphTools Documentation, Release 0.4.5

substitution is complete

substrate_port, = (port for port in E1.ports if port.name == "S")
product_port, = (port for port in E1.ports if port.name == "P")

bgt.connect(A_junction, substrate_port)
bgt.connect(product_port, B_junction)

bgt.draw(model)

Inspect the models constitutive relations, state variables and control vars by:

State Variables
print(model.state_vars)
outputs {'x_0': (C: A, 'q_0'), 'x_1': (C: B, 'q_0'), 'x_2': (BG: E1, 'x_0')}

Control Variables
print(model.control_vars)
outputs {'u_0': (BG: E1, 'u_0')}

print(model.constitutive_relations)
outputs [dx_0 + 10*u_0*x_0*x_2 - u_0*x_1*x_2,
dx_1 - 10*u_0*x_0*x_2 + u_0*x_1*x_2,
dx_2]

Here we can see that the x_2 co-ordinate of the model points to the x_0 co-ordinate of the enzyme reaction, which
we know to be the state of the enzyme component C:E. Observe that the appearance of dx_2 alone in the constitutive
relations implies that x_2, the enzyme quantity, is conserved.

3.3 Part 3: Exploiting Modularity to reaction chains

We will now use the above function to build a reaction chain. That is, we think the correct model of A=B is A = A1 =
A2 = A3 = B. Create a new model to represent the reaction chain and add the substrate and product ports:

chain = bgt.new(name="3 Step Chain")
substrate = bgt.new("SS", name='S')
product = bgt.new("SS", name="P")
substrate_law = bgt.new("0")
product_law = bgt.new("0")
bgt.add(chain, substrate, product, substrate_law, product_law)

bgt.connect(substrate, substrate_law)
bgt.connect(product_law, product)

bgt.expose(substrate, label='S')
bgt.expose(product, label='P')

Now, add the first step in the linear chain of reactions, and connect it to the substrate law.:

reaction_step = enzyme_catalysed_reaction('E1')

(continues on next page)

10 Chapter 3. Tutorial: Building Modular Enzymatic Reactions

BondGraphTools Documentation, Release 0.4.5

(continued from previous page)

bgt.add(chain, reaction_step)
substrate_port, = (port for port in reaction_step.ports if port.name == "S")
bgt.connect(substrate_law, substrate_port)

Iteratively add each segment of the linear chain, by finding the product of the last reaction, connecting that to a newly
created intermediary 𝐴𝑖, which is then connected to the substrate of the next catalysed reaction.:

for i in range(1, 4):
last_product_port, = (port for port in reaction_step.ports if port.name == "P")
step_law = bgt.new("0")
step_ce = bgt.new("Ce", library="BioChem", name=f"A{i}", value={"R":1,"T":1, "k":1})
reaction_step = enzyme_catalysed_reaction(f"E{i}")

bgt.add(chain, step_ce, step_law, reaction_step)
substrate_port, = (port for port in reaction_step.ports if port.name == "S")
bgt.connect(last_product_port, step_law)
bgt.connect(step_law, step_ce)
bgt.connect(step_law, substrate_port)

last_product_port, = (port for port in reaction_step.ports if port.name == "P")
bgt.connect(last_product_port, product_law)

Draw the chain to make sure everything is connected.:

bgt.draw(chain)

Observe that the constitutive relations:

print(chain.constitutive_relations)

for this chain component is clearly a function of two efforts, and two flows, in addition to the internal state variables,
and control variables.

We can now return to our model, and swap out the E1 for the 3 step chain:

bgt.disconnect(E1, A_junction)
bgt.disconnect(E1, B_junction)

bgt.remove(model, E1)
bgt.add(model, chain)

substrate_port, = (port for port in chain.ports if port.name == "S")
product_port, = (port for port in chain.ports if port.name == "P")

bgt.connect(A_junction, substrate_port)
bgt.connect(product_port, B_junction)

Observing bgt.draw(model), the network topology of the model has not changed. The difference is noticeable when
the constitutive relations are produced.:

3.3. Part 3: Exploiting Modularity to reaction chains 11

BondGraphTools Documentation, Release 0.4.5

print(model.constitutive_relations)
[dx_0 + 10*u_0*x_0*x_2 - u_0*x_2*x_3,
dx_1 + u_3*x_1*x_8 - u_3*x_7*x_8,
dx_2,
dx_3 - 10*u_0*x_0*x_2 + u_0*x_2*x_3 + u_1*x_3*x_4 - u_1*x_4*x_5,
dx_4,
dx_5 - u_1*x_3*x_4 + u_1*x_4*x_5 + u_2*x_5*x_6 - u_2*x_6*x_7,
dx_6,
dx_7 - u_2*x_5*x_6 + u_2*x_6*x_7 - u_3*x_1*x_8 + u_3*x_7*x_8,
dx_8]

Where the model co-ordinates are given by:

print(model.state_vars)
{'x_0': (C: A, 'q_0'),
'x_1': (C: B, 'q_0'),
'x_2': (BG: 3 Step Chain, 'x_0'),
'x_3': (BG: 3 Step Chain, 'x_1'),
'x_4': (BG: 3 Step Chain, 'x_2'),
'x_5': (BG: 3 Step Chain, 'x_3'),
'x_6': (BG: 3 Step Chain, 'x_4'),
'x_7': (BG: 3 Step Chain, 'x_5'),
'x_8': (BG: 3 Step Chain, 'x_6')}

12 Chapter 3. Tutorial: Building Modular Enzymatic Reactions

CHAPTER

FOUR

DISCUSSION

4.1 Additional Material

4.1.1 Bond Graph Clinic Slides 2018

Slides are available for 4 introductory workshops on bond graph modelling which were held at the University of Mel-
bourne in 2018.

4.2 BondGraphsTools from 10,000 feet

BondGraphTools is designed to be a modelling tool, to allow the user to programmatically describe the power storing,
transforming and dissipating elements of a system, and generate simplified/reduced symbolic equations for the system
as a whole.

4.2.1 Model Capture

A bond graph model is created by:

1. Instantiating a new bond graph - a composite container for the system, or part of a larger system, that the
user wishes to model.

2. Existing components (either atomics drawn from standard libraries, or composites built via this process)
are added to the bond graph model, describing the various processes (eg, dissipation, or energy storage)
active within the system in question.

3. Connections are defined between the ports of components, capturing the channels through which power
flows.

4. If necessary, ports are exposed, defining a power port outside the container which mirrors the power flowing
through a corresponding interior port.

Once a model is created, it is ready for reduction and/or simulation, or for integration with other models to form a
larger, more compex system.

13

https://github.com/peter-cudmore/Bond-Graph-Clinic

BondGraphTools Documentation, Release 0.4.5

4.2.2 Model Reduction

In the context of BondGraphTools, model reduction refers to the process by which the constituative relations (equations
which constrain power flows and storage within a given component) and connectivity constraints (ie, bonds) are passed
through a series of symbolic algebraic simplifications so as to generate a lower-dimensional represenation of the system.

The model capture procedure results in composite state 𝑋 containing all dynamic variables (eg, position/momentum),
control variables and power variables (efforts and flows). The behaviour of the system is then governed by the level
sets of Φ(𝑋) = 0. By exploiting inherient structures (such a sparsity and a only small amounts of nonlinearly), an
invertible co-ordinate transform 𝑌 = 𝑃 (𝑋) can be found such that dim(𝑌) ≪ dim(𝑋), along with a reduced order
constitutive relation for the composed system Φ̃(𝑌) = 0, where Φ̃ is ‘simpler’ in the sense that it contains a minimal
set of relations describing the systems dynamics.

This model reduction happens behind the scenes when the user asks for the constiutive relations of their newly-
constructed model, or in prepation for running numerical simulation.

14 Chapter 4. Discussion

CHAPTER

FIVE

API REFERENCE

5.1 BondGraphTools

class BondGraphTools.BondGraph(*args, **kwargs)
Representation of a bond graph model.

property basis_vectors
Basis vectors for the state space (X), port space (J), and control space (U) from an external point of view.

For the state space dictionaries are of the form:

X = {
sympy.Symbol('x_i'): (object, var)

}

We assume the object is a subclass of BondGraphBase and the var refers to the variable name in the objects
local co-ordinate system and may be a string or a sympy.Symbol

For the port space, dictionaries are of the form:

J = {
(sympy.Symbol(e_i), sympy.Symbol(f_i)): Port(obj, idx)

}

where Port is an instance of Port. Finally for the control variables we have:

U = {
sympy.Symbol(u_i):(object, var)

}

Where object and var are specified as per the state space.

bonds
The list of connections between internal components

components
The components, instances of BondGraphBase, that make up this model

property constitutive_relations
The equations governing this objects dynamics.

property control_vars
A dict of all control variables in the form:

15

BondGraphTools Documentation, Release 0.4.5

{
"u_0": (component, control_var)

}

property internal_ports
A list of the ports internal to this model

map_port(label, ef)
Exposes a pair of effort and flow variables as an external port :param label: The label to assign to this port.
:param ef: The internal effort and flow variables.

property metamodel
The meta-model type of this object.

property params

A dictionary of parameters for this model in the form:: i: (component, param_name)

property state_vars
A dict of all state variables in the form:

{
"x_0": (component, state_var)

}

Where “x_0” is the model state variable, and state_var is the corresponding state variable of component

system_model(control_vars=None)
Produces a symbolic model of the system in reduced form.

In many cases it is useful to have a full description of the system in symbolic form, and not just a list of
constitutive relations.

Returns (coordinates, mappings, linear_op, nonlinear_op, constraints)

This method generates:

• The model coordinate system (list) 𝑥

• A mapping (dict) between the model coordinates and the component coordinates

• A linear operator (sympy.Matrix) 𝐿

• A nonlinear operator (sympy.Matrix) 𝐹

• A list of constraints (sympy.Matrix) 𝐺

The coordinates are of the form

𝑥 = (𝑑𝑥0, 𝑑𝑥1, . . . , 𝑒0, 𝑓0, 𝑒1, 𝑓1, . . . , 𝑥0, 𝑥1, . . . , 𝑢0, 𝑢1, . . .)

So that the system obeys the differential-algebraic equation

𝐿𝑥 + 𝐹 (𝑥) = 0 𝐺(𝑥) = 0

See also:

BondGraph.basis_vectors

property template
The model template from which this was created.

16 Chapter 5. API Reference

BondGraphTools Documentation, Release 0.4.5

BondGraphTools.new(component=None, name=None, library='base', value=None, **kwargs)
Creates a new Bond Graph from a library component.

Parameters

• component (str or obj) – The type of component to create. If a string is specified, the the
component will be created from the appropriate libaray. If an existing bond graph is given,
the bond graph will be cloned.

• name (str) – The name for the new component

• library (str) – The library from which to find this component (if

• string) (component is specified by) –

• value –

Returns: instance of BondGraph

Raises: NotImplementedError

BondGraphTools.add(model, *args)
Add the specified component(s) to the model

BondGraphTools.swap(old_component, new_component)
Replaces the old component with a new component. Components must be of compatible classes; 1 one port
cannot replace an n-port, for example. The old component will be completely removed from the system model.

Parameters

• old_component – The component to be replaced. Must already be in the model.

• new_component – The substitute component which must not be in the model

Raises InvalidPortException, InvalidComponentException –

BondGraphTools.remove(model, component)
Removes the specified components from the Bond Graph model.

BondGraphTools.connect(source, destination)
Connects two components or ports.

Defines a power bond between the source and destination ports such that the bond tail is at the source, and the
bond head is at the destination. We assume that either the source and/or destination is or has a free port.

Parameters

• source (Port or BondGraphBase) – The tail of the power bond

• destination (Port or BondGraphBase) – The head of the power bond

Raises InvalidPortException, InvalidComponentException –

See also:

disconnect()

BondGraphTools.disconnect(target, other)
Disconnects the flow of energy between the two components or ports. If there is no connection, this method does
nothing.

Parameters

• target (Port, BondGraphBase) –

• other (Port, BondGraphBase) –

Raises InvalidComponentException –

5.1. BondGraphTools 17

BondGraphTools Documentation, Release 0.4.5

See also:

connect()

BondGraphTools.expose(component, label=None)
Exposes the component as port on the parent.

If the target component is not a SS component, it is replaced with a new SS component. A new external port is
added to the parent model, and connected to the SS component.

Parameters

• component – The component to expose.

• label – The label to assign to the external port

Raises: InvalidComponentException

BondGraphTools.set_param(component, param, value)
Sets the specified parameter to a particular value.

Parameters

• component (BondGraphBase) – The particular component.

• param – The parameter to set

• value – The value to assign it to, may be None

BondGraphTools.simulate(*args, **kwargs)
Simulate the system dynamics.

This method integrates the dynamics of the system over the specified interval of time, starting at the specified
initial state.

The solver used is a differential-algebraic integrator which respects conservation laws and algebraic constraints.
It is expected that the initial state satisfies the systems inherent algebraic constrains; inconsistent initial conditions
will raise exceptions.

The initial values of derivatives can be specified and the solver will ensure they are consistent with the initial
state, or change them if they are not.

todo: detial control variables.

:param system BondGraph : The system to simulate :param timespan: A pair (list or tuple) containing the start
and end

points of the simulation.

Parameters

• x0 – The initial conditions of the system.

• dx0 (Optional) – The initial rates of change of the system. The default value (None) indi-
cates that the system should be initialised from the state variable initial conditions.

• dt – The time step between reported (not integrated) values.

• control_vars – A dict, list or tuple specifing the values of the control variables.

Returns numpy array of timesteps x: numpy array of state values

Return type t

Raises ModelException, SolverException –

18 Chapter 5. API Reference

BondGraphTools Documentation, Release 0.4.5

BondGraphTools.draw(system)
Produces a network layout of the system.

Parameters system – The system to visualise

Returns matplotlib.Plot

5.2 BondGraphTools.atomic

This module contains class definitions for atomic components; those which cannot be decomposed into other compo-
nents.

class BondGraphTools.atomic.Component(*args, **kwargs)
Bases: BondGraphTools.base.BondGraphBase, BondGraphTools.port_managers.PortManager

Components defined by constitutive relations.

property basis_vectors
See BondGraphBase.basis_vectors

property constitutive_relations
See BondGraphBase

property control_vars
See BondGraphBase

property metamodel
The meta-model type of this object.

property params
See BondGraphBase

set_param(param, value)
Warning: Scheduled to be deprecated

property state_vars
See BondGraphBase

property template
The model template from which this was created.

5.3 BondGraphTools.base

Base classes for bond graph models and connections.

class BondGraphTools.base.Bond(tail, head)
Bases: BondGraphTools.base.Bond

Stores the connection between two ports.

Head and tail are specified to determine orientation

head
The ‘harpoon’ end of the power bond and direction of positive f

tail
The non-harpoon end, and direction of negative f

5.2. BondGraphTools.atomic 19

BondGraphTools Documentation, Release 0.4.5

class BondGraphTools.base.BondGraphBase(*args, **kwargs)
Bases: object

Base class definition for all bond graphs.

Parameters

• name – Name of this model, assumed to be unique.

• parent – Parent model, or none.

• metamodel – Metamodel class.

property basis_vectors
The input/ouput, dynamic and interconnect vectors.

property constitutive_relations
The equations governing this objects dynamics.

property metamodel
The meta-model type of this object.

parent
Model that contains this object.

property root
The root of the tree to which this object belongs.

property template
The model template from which this was created.

property uri
Model reference locator.

class BondGraphTools.base.Port(component, index)
Bases: object

Basic object for representing ports.

Looks and behaves like a namedtuple: component, index = Port

Parameters

• component – The owner of this port.

• index – The index of this port in the component.

component
(PortManager) The component that this port is attached to

index
(int) The numerical index of this port

is_connected
(bool) True if this port is plugged in.

20 Chapter 5. API Reference

BondGraphTools Documentation, Release 0.4.5

5.4 BondGraphTools.component_manager

Component Libraries.

This module takes care of the loading and management of component libraries. This library will automatically load all
factory libraries upon import. Additionally libraries can be added via load_library().

Component Libraries are expected to be in json format. The structure must be:

{
"id": The unique library id (str),
"description": The description of this library
"components": {

"component_id": component dictionary,
...

}
}

Each Component dictionary must be of the form:

{

}

BondGraphTools.component_manager.find(component, restrict_to=None, find_all=False,
ensure_unique=False)

Find the specified component.

Parameters

• component – The component id to find.

• restrict_to – list or set of library id’s to be that the search should be restricted to.

• find_all – False if the function should return only the first instance of the component, True
if the function should return all such instances

• ensure_unique – If true, this assumes that the component id must be unique across li-
braries, and hence will raise an exception if this is assumption is violated.

Returns the library id, or a list of library_id in which this component can be found.

Raises

• NotImplementedError - if the component is not found. –

• ValueError - if the component is assume to be unique, but is not –

BondGraphTools.component_manager.get_component(component, library='base')
Fetch the component data for the specified component.

Parameters

• component – The id of the specific component

• library – The id of the library to which the component belongs

Returns dict - the component dictionary

BondGraphTools.component_manager.get_components_list(library)
Fetch a list of components available in the given library.

Parameters library – The library id of the library to query

5.4. BondGraphTools.component_manager 21

BondGraphTools Documentation, Release 0.4.5

Returns list of (component id, description) tuples

BondGraphTools.component_manager.get_library_list()
Fetch a list of the libraries available for use.

Returns list of (library id, description) tuples

BondGraphTools.component_manager.load_library(filename)
Load the library specified by the filename.

Parameters filename – The (absolute) filename of the library to be loaded.

Returns True if the library was successfully loaded.

Return type bool

5.5 BondGraphTools.exceptions

Exceptions and errors for BondGraphTools

exception BondGraphTools.exceptions.InvalidComponentException
Exception for when trying to use a model that can’t be found, or is of the wrong type

exception BondGraphTools.exceptions.InvalidPortException
Exception for trying to access a port that is in use, or does not exist

exception BondGraphTools.exceptions.ModelException
Exception for inconsistent or invalid models when running simulations

exception BondGraphTools.exceptions.ModelParsingError
Exception for problems generating symbolic equations from string

exception BondGraphTools.exceptions.SolverException
Exception for issues running numerical solving.

exception BondGraphTools.exceptions.SymbolicException
Exception for when there are issues in model reduction or symbolic manipulation

5.6 BondGraphTools.fileio

The file save/load interface and file format data model.

This module provides the basic IO functionality such as saving and loading to file.

BondGraphTools.fileio.load(file_name, model=None, as_name=None)
Load a model from file.

Parameters file_name (str or Path) – The file to load.

Returns An instance of BondGraph

Raises NotImplementedError –

BondGraphTools.fileio.save(model, filename)
Save the model to file.

Parameters

• model – The model to be saved

• filename – The file to save to

22 Chapter 5. API Reference

BondGraphTools Documentation, Release 0.4.5

5.7 BondGraphTools.sim_tools

Tools for running model simulations.

BondGraphTools.sim_tools.simulate(*args, **kwargs)
Simulate the system dynamics.

This method integrates the dynamics of the system over the specified interval of time, starting at the specified
initial state.

The solver used is a differential-algebraic integrator which respects conservation laws and algebraic constraints.
It is expected that the initial state satisfies the systems inherent algebraic constrains; inconsistent initial conditions
will raise exceptions.

The initial values of derivatives can be specified and the solver will ensure they are consistent with the initial
state, or change them if they are not.

todo: detial control variables.

:param system BondGraph: The system to simulate :param timespan: A pair (list or tuple) containing the start
and end

points of the simulation.

Parameters

• x0 – The initial conditions of the system.

• dx0 (Optional) – The initial rates of change of the system. The default value (None) indi-
cates that the system should be initialised from the state variable initial conditions.

• dt – The time step between reported (not integrated) values.

• control_vars – A dict, list or tuple specifing the values of the control variables.

Returns numpy array of timesteps x: numpy array of state values

Return type t

Raises ModelException, SolverException –

5.8 BondGraphTools.reaction_builder

A set of common tools for building and manipulating chemical reactions, and for producing bond graph models from
a reaction network.

class BondGraphTools.reaction_builder.Reaction_Network(reactions=None, name=None,
temperature=300, volume=1)

Bases: object

Parameters

• reactions –

• name –

• temperature – Temperature in Kelvin (Default 300K, or approx 27c)

• volume –

5.7. BondGraphTools.sim_tools 23

BondGraphTools Documentation, Release 0.4.5

add_chemostat(species, concentration=None)
Add a (generalised) Chemostat to the reaction network. This provides a variable source of the particular
species so as to maintain a particular concentration. This can also act as a I/O source.

Notes

Only one chemostat is available per species; so adding a duplicate will overwrite the previous chemostatic
concentration (if defined)

Parameters

• species – The name/identifier of the particular chemical species

• concentration – (default None) The fixed concentration. Left as a free parameter if None

add_flowstat(species, flux=None)
Adds a (generalised) Flowstat, which provides a flux of the particular species in or out of the reaction
network.

Notes

Only one flowstat per species, so adding duplicate flowstats will overwrite the previous flowstatic fluxes (if
defined)

See also:

add_chemostat()

Parameters

• species – The name/identifier of the chemical species

• flux – (default None) The rate at which this species is added/removed. Left as a free
paramter if None

add_reaction(reaction, forward_rates=None, reverse_rates=None, name='')
Adds a new reaction to the network.

Parameters

• reaction (str) – A sequence of reactions to be added.

• forward_rates (list) – The forward rates of these reactions.

• reverse_rates (list) – The reverse rates of these reactions.

• name – The name of this set of reactions.

Reactions are assumed to be of the form:

"A + B = C + D = E + F"

Where the “math:i`th equals sign denotes a reversible reaction, with forward and reverse rates (if they exist)
denoted by `forward_rate[i] and reverse_rate[i] respectively.

Warning: Rate functionality is not yet implemented!

24 Chapter 5. API Reference

BondGraphTools Documentation, Release 0.4.5

as_network_model(normalised: bool = False)
Produces a bond graph BondGraph.BondGraph model of the system

Parameters normalised – If true, sets pressure and temperature to 1

Returns A new instance of BondGraphTools.BondGraph representing this reaction system.

property fluxes
The reaction fluxes.

A tuple (V,x) contain the vector 𝑉 (𝑥) and the coordinates :math:’x_{i}` such that for the the stoichiometric
matrix 𝑁 and the reation rates 𝜅 = 𝑒𝑥𝑡𝑑𝑖𝑎𝑔(𝜅1, 𝜅2, . . .), the mass action description of the system is math:

\dot{x} = N\kappa V(x)

property forward_stoichiometry
The forward stoichiometric matrix.

name
The name of this reaction network

property reverse_stoichiometry
The reverse stoichiometric matrix.

property species
A list of the chemical species invoved in this reaction network

property stoichiometry
The stoichiometric matrix

5.8. BondGraphTools.reaction_builder 25

BondGraphTools Documentation, Release 0.4.5

26 Chapter 5. API Reference

CHAPTER

SIX

BONDGRAPHTOOLS

6.1 Overview

BondGraphTools is a python library for systems modelling based on the bond graph methodology [Gaw1996],
[Gaw2007].

BondGraphTools is intended to be used by

• software developers; as a framework to build modelling interfaces on top of

• engineers; to quickly build and simulate physical systems

• mathematicians; to perform model reduction and analysis

BondGraphTools is built upon the scientific python stack; numpy, scipy, sympy, scikit.odes and matplotlib

6.2 How to read the docs

The documentation for this library is organised into the following sections.

• This page show how to install BondGraphTools

• Tutorials contains a list of step-by-step tutorials demonstrating how to use BondGraphTools.

• Discussion contains high level discussion about to library.

• API Reference is the library reference documentation.

6.3 Getting Started

6.3.1 Requirements

• Python 3.7 or above.

27

BondGraphTools Documentation, Release 0.4.5

6.3.2 Installation

1. Install Python 3.7 or greater.

2. Install Sundials and scikits.odes [dependencies](https://scikits-odes.readthedocs.io/en/stable/installation.
html)

3. Install BondGraphTools via pip: pip install BondGraphTools

6.3.3 Usage

BondGraphTools can be loaded inside a jupyter-notebook, python interpreter, or script by using:

import BondGraphTools

Api reference for the package and it’s contents can be accessed using the help command:

help(BondGraphTools)

6.3.4 Contributing

The best way to contribute right now is to use it! If you wish to help out, please visit the project github.

6.4 Bibliography

28 Chapter 6. BondGraphTools

https://scikits-odes.readthedocs.io/en/stable/installation.html
https://scikits-odes.readthedocs.io/en/stable/installation.html
https://github.com/BondGraphTools/BondGraphTools

BIBLIOGRAPHY

[Gaw2007] https://ieeexplore.ieee.org/document/4140745

[Gaw1996] http://www.gawthrop.net/Books/GawSmi96.pdf

29

https://ieeexplore.ieee.org/document/4140745
http://www.gawthrop.net/Books/GawSmi96.pdf

BondGraphTools Documentation, Release 0.4.5

30 Bibliography

PYTHON MODULE INDEX

b
BondGraphTools, 15
BondGraphTools.atomic, 19
BondGraphTools.base, 19
BondGraphTools.component_manager, 21
BondGraphTools.exceptions, 22
BondGraphTools.fileio, 22
BondGraphTools.reaction_builder, 23
BondGraphTools.sim_tools, 23

31

BondGraphTools Documentation, Release 0.4.5

32 Python Module Index

INDEX

A
add() (in module BondGraphTools), 17
add_chemostat() (BondGraph-

Tools.reaction_builder.Reaction_Network
method), 23

add_flowstat() (BondGraph-
Tools.reaction_builder.Reaction_Network
method), 24

add_reaction() (BondGraph-
Tools.reaction_builder.Reaction_Network
method), 24

as_network_model() (BondGraph-
Tools.reaction_builder.Reaction_Network
method), 24

B
basis_vectors (BondGraphTools.atomic.Component

property), 19
basis_vectors (BondGraph-

Tools.base.BondGraphBase property), 20
basis_vectors (BondGraphTools.BondGraph prop-

erty), 15
Bond (class in BondGraphTools.base), 19
BondGraph (class in BondGraphTools), 15
BondGraphBase (class in BondGraphTools.base), 19
BondGraphTools

module, 15
BondGraphTools.atomic

module, 19
BondGraphTools.base

module, 19
BondGraphTools.component_manager

module, 21
BondGraphTools.exceptions

module, 22
BondGraphTools.fileio

module, 22
BondGraphTools.reaction_builder

module, 23
BondGraphTools.sim_tools

module, 23
bonds (BondGraphTools.BondGraph attribute), 15

C
component (BondGraphTools.base.Port attribute), 20
Component (class in BondGraphTools.atomic), 19
components (BondGraphTools.BondGraph attribute), 15
connect() (in module BondGraphTools), 17
constitutive_relations (BondGraph-

Tools.atomic.Component property), 19
constitutive_relations (BondGraph-

Tools.base.BondGraphBase property), 20
constitutive_relations (BondGraph-

Tools.BondGraph property), 15
control_vars (BondGraphTools.atomic.Component

property), 19
control_vars (BondGraphTools.BondGraph property),

15

D
disconnect() (in module BondGraphTools), 17
draw() (in module BondGraphTools), 18

E
expose() (in module BondGraphTools), 18

F
find() (in module BondGraph-

Tools.component_manager), 21
fluxes (BondGraphTools.reaction_builder.Reaction_Network

property), 25
forward_stoichiometry (BondGraph-

Tools.reaction_builder.Reaction_Network
property), 25

G
get_component() (in module BondGraph-

Tools.component_manager), 21
get_components_list() (in module BondGraph-

Tools.component_manager), 21
get_library_list() (in module BondGraph-

Tools.component_manager), 22

H
head (BondGraphTools.base.Bond attribute), 19

33

BondGraphTools Documentation, Release 0.4.5

I
index (BondGraphTools.base.Port attribute), 20
internal_ports (BondGraphTools.BondGraph prop-

erty), 16
InvalidComponentException, 22
InvalidPortException, 22
is_connected (BondGraphTools.base.Port attribute),

20

L
load() (in module BondGraphTools.fileio), 22
load_library() (in module BondGraph-

Tools.component_manager), 22

M
map_port() (BondGraphTools.BondGraph method), 16
metamodel (BondGraphTools.atomic.Component prop-

erty), 19
metamodel (BondGraphTools.base.BondGraphBase

property), 20
metamodel (BondGraphTools.BondGraph property), 16
ModelException, 22
ModelParsingError, 22
module

BondGraphTools, 15
BondGraphTools.atomic, 19
BondGraphTools.base, 19
BondGraphTools.component_manager, 21
BondGraphTools.exceptions, 22
BondGraphTools.fileio, 22
BondGraphTools.reaction_builder, 23
BondGraphTools.sim_tools, 23

N
name (BondGraphTools.reaction_builder.Reaction_Network

attribute), 25
new() (in module BondGraphTools), 16

P
params (BondGraphTools.atomic.Component property),

19
params (BondGraphTools.BondGraph property), 16
parent (BondGraphTools.base.BondGraphBase at-

tribute), 20
Port (class in BondGraphTools.base), 20

R
Reaction_Network (class in BondGraph-

Tools.reaction_builder), 23
remove() (in module BondGraphTools), 17
reverse_stoichiometry (BondGraph-

Tools.reaction_builder.Reaction_Network
property), 25

root (BondGraphTools.base.BondGraphBase property),
20

S
save() (in module BondGraphTools.fileio), 22
set_param() (BondGraphTools.atomic.Component

method), 19
set_param() (in module BondGraphTools), 18
simulate() (in module BondGraphTools), 18
simulate() (in module BondGraphTools.sim_tools), 23
SolverException, 22
species (BondGraphTools.reaction_builder.Reaction_Network

property), 25
state_vars (BondGraphTools.atomic.Component prop-

erty), 19
state_vars (BondGraphTools.BondGraph property), 16
stoichiometry (BondGraph-

Tools.reaction_builder.Reaction_Network
property), 25

swap() (in module BondGraphTools), 17
SymbolicException, 22
system_model() (BondGraphTools.BondGraph

method), 16

T
tail (BondGraphTools.base.Bond attribute), 19
template (BondGraphTools.atomic.Component prop-

erty), 19
template (BondGraphTools.base.BondGraphBase prop-

erty), 20
template (BondGraphTools.BondGraph property), 16

U
uri (BondGraphTools.base.BondGraphBase property),

20

34 Index

	Tutorial: Driven Filter Circuit
	Part 1: Basic Use
	Part 2: Control
	Part 3: Simulations

	Additional Tutorials
	Biochemical Networks Tutorials

	Tutorial: Building Modular Enzymatic Reactions
	Part 1: Building a basic chemical reaction
	Part 2: Modularity and enzyme catalysed reactions.
	Part 3: Exploiting Modularity to reaction chains

	Discussion
	Additional Material
	Bond Graph Clinic Slides 2018

	BondGraphsTools from 10,000 feet
	Model Capture
	Model Reduction

	API Reference
	BondGraphTools
	BondGraphTools.atomic
	BondGraphTools.base
	BondGraphTools.component_manager
	BondGraphTools.exceptions
	BondGraphTools.fileio
	BondGraphTools.sim_tools
	BondGraphTools.reaction_builder

	BondGraphTools
	Overview
	How to read the docs
	Getting Started
	Requirements
	Installation
	Usage
	Contributing

	Bibliography

	Bibliography
	Python Module Index
	Index

